

ANSYS Aqwa Review

Paul Schofield - ANSYS Houston

ANSYS And for those that do not know ANSYS Aqwa

- ANSYS Aqwa for hydrodynamic analysis and vessel motions
- Applications include:
 - Hydrodynamic Diffraction and Radiation
 - Moored multi-body systems
 - Sea keeping (eg ship performance)

.... and specifically

- Connect /offloading /disconnect scenarios
- Floatover installations
- Launching installations
- Transportation
- Ports and harbors

Courtesy of SBM

ANSYS and specifically

- Lifting operations
- Failure conditions
- Air gap
- User definable functionality eg DPS

ANSYS ANSYS Aqwa – Wave Energy Systems

Wave Treader – Courtesy Green Ocean Energy Ltd

Ocean Treader - Courtesy Green Ocean Energy Ltd

ANSYS Aqwa - Floating Wind Turbine

• Challenges:

 To validate the patented concept of the wind turbine foundation called SeaBreeze[©] Floating with approx. dimensions:

Nascelle Height : 72.75m
Rotor Diameter : 90-100m
Water Depth : 50m plus

– Wave Height : 20m!

To compare simulations with extensive model testing

Key Features:

- Special Tether elements (i.e., pre-tensioned mooring lines with bending stiffness) incl. stress & fatigue
- Capabilities to take into account 2nd order effects in hydrodynamic analysis for large and/or steep waves, including effects of intermittent wetting and mean/slow drift

Aqwa- Transport & Installation of Offshore High Voltage Station

• Challenges:

- To determine the loads in the lifting rigging and the motions of the jacket during both transport and installation.
- With these values, the allowable weather conditions are defined for multiple wave headings

Key Features:

- Multi-body motion analysis both in frequency and time domain
- Various connecting accessories (e.g., winch, fender, ball/socket, hinge connecters, pulley)
- Mixed model of Morison and diffraction elements in time domain

ANSYS Aqwa – review

- How we got where we are today
- Progress in ANSYS Workbench integration
- Current developments
- Thoughts about the future

ANSYS Agwa – some history

- 1975 2001: developed by WS Atkins
- Technology acquired by Century Dynamics in 2001
- Century Dynamics acquired by ANSYS in 2005
- v5.7d (Q1 2008) was the last to be issued under the old Century Dynamics system. Equivalent to ANSYS 11.0
- 12.0 (Q2 2009) Aqwa was included in the Ansys release system. Adopted ANSYS compiler, build process, QA, licensing etc.
 - Stand-alone prototype Workbench look-alike: AQWAWB
- 12.1 (Q4 2009) Agwa-Line included in Workbench as "Hydrodynamic Diffraction" analysis system

Hydrodynamics in Workbench

13.0

- Link to Designmodeler for geometry generation
- Hydrodynamic Diffraction and Time Response systems
- Animation of RAO motions and wave surface from Diffraction analysis
- Mooring connections
- Numerical graphical results from Time-History

14.0

- Fender and articulation (joints) included
- Aqwa Reference Manual now part of standard ANSYS Help System

Hydrodynamics in Workbench

14.5 (Current Release)

- Time-history animations available
- Improvements to user interface

ANSYS Technology - 13.0

- Bending stiffness and non-linear axial stiffness for catenary mooring lines enables modelling of SCRs and synthetic mooring lines
- Additional stiffness between structures enables mooring systems to be modeled in a diffraction/radiation analysis
- ISO wind spectrum

ANSYS Technology - 14.0

- Multiple wave spectra with 2nd order interaction in Aqwa-Librium and Drift. Enables simulation of spread seas in time-domain.
- Linearization of TUBE drag in Aqwa-Line. Enables RAOs of tubular structures to be more accurate
- Bending Moment and Shear Force improvements in AGS
 - TUBEs included
 - Distribution along vertical axis
 - **Enables bending moment calculation and plotting for Spars**
 - Aqwa-Line stage 5
- Wheeler stretching in Aqwa-Naut, gives more accurate surface elevation and wave pressure.

ANSYS Technology - 14.5

- Multiple wave spectra with 2nd order interaction in **Aqwa-Fer**
- Linearization of Morison drag in Aqwa-Line now includes DISC and STUB elements
- Linearization of Morison drag in Aqwa-Fer for TUBE, **DISC and STUB elements**
- Bending Moment and Shear Force improvements in AGS DISC and STUB elements included

ANSYS ANSYS Agwa 15.0

Current priorities

- Improved meshing exposure of more of the meshing technology available in other parts of Workbench
- Animation of wave surface for Time History analyses
- Completion of drag linearization
 - Hull drag
 - Multiple structures in Aqwa Line
- Coupling with Wind-Turbine analysis programs
- Improved documentation, starting with theory manual

ANSYS ANSYS Aqwa 15.0+

Please add your suggestions on the questionnaire.

- Continuing improvements in Workbench
 - Additional features (next slide)
- Improvements in core technology
 - Hydrodynamics
 - Cable dynamics
 - Time history simulations
- Improving performance parallel processing
- Improving links to other ANSYS applications, especially load transfer to structural model

Hydrodynamics in Workbench

Future enhancements to be worked on ...

- Symmetry
- Tethers
- Aqwa-Librium
- Aqwa-Fer
- Cable-dynamics stand-alone analysis
- Graphical post-processing as in AGS
- Import of old databases

ANSYS Aqwa – further integration potential

- Use of ANSYS tools for parallel processing
- More robust import of CAD models
- Provide hydrodynamic loads to structural analysis
- Use CFD to generate drag coefficients for use in Aqwa
- Use Aqwa cable models in other systems; e.g. Rigid Body Dynamics, CFD of floating structures
- Use Aqwa to provide boundary conditions for CFD analysis ??

ANSYS Aqwa – the future

- ANSYS vison for Simulation Driven Product **Development**
- Integrated environment for multi-physics analysis to support improved and faster design
- Aqwa has a role, both as supplier and receiver of data