

Richard May – Team Lead, Aqwa development

ANSYS 1. Introduction

Ocean waves with different frequencies and directions are very difficult to model mathematically

Various simplified theories & spectral models of ocean waves

- small amplitude linear Airy wave
- higher order Stokes wave
- long crested irregular waves
- multiple directional (short crested) irregular waves

Waves induce forces on offshore structures:

- the wave exciting forces at wave frequency
- non-linear wave forces:

low frequency drift force & sum frequency forces, due to the instantaneous wetted hull surface varying, impact, slamming forces.

Long crested wave case does not necessarily lead to conservative results,

the interaction effect between waves from different directions may be important (Renaud et al. 2008)

ANSYS 2. Ocean Waves Modeling in Aqwa

Definition of spectral group in Aqwa-Workbench

tails			P		
Details of Jonswap (Hs=1.0	fp=0 6)+s	we			
Name	Jonswap (
Visibility	Visible				
Activity	Not Suppressed				
Wave Range Defined by	Frequency				
Wave Spectrum Details					
Wave Type	Jonswap (Hs)				
Direction of Spectrum	50 °				
Seed Definition	User defined				
Seed	50001				
Omit Calculation of Drift Forces	No	-			
Start Frequency	0.1 rad/s	De	tails		
Finish Frequency	1.2 rad/s		Details of Imported you		overtion #1
Significant Wave Height	1 m	15	Name	e ei	evalion #1
Gamma	1		Visibility		Visible
Peak Frequency	0.6 rad/s		Activity		Not Suppr
Cross Swell Details			Wave Spectrum Details		Not Suppl
Cross Swell Spectrum	Gaussian		Wave Type		Liser Time
Direction	90 °		Direction of Spectrum		0.0
Hs	0.5 m		Seed Definition		Program (
Peak Frequency	0.4 rad/s		Omit Calculation of Drift For	ces	No
Sigma	1 rad/s				100 m
			Y Reference		0 m
		11P			

mported wave elevation #1

Not Suppressed

User Time History

Program Controlled

ANSYS 3. Multi-Directional Wave Effects on Loads

• Wave representation: Linear superposition – no interaction

$$\zeta(\vec{X},t) = \sum_{m=1}^{N_d} \sum_{j=1}^{N_w} a_{jm} e^{i(K_{jm} X \cos \theta_m + K_{jm} Y \sin \theta_m - \omega_{jm} t + \varepsilon_{jm})}$$

• 1st order wave exciting force: Linear superposition

$$\vec{F}^{(1)}(t) = \sum_{m=1}^{N_d} \sum_{j=1}^{N_w} a_{jm} \vec{F}_{jm}^{(1)} e^{i(-\omega_{jm} t + \varepsilon_{jm})}$$

• Morison drag force: Linear superposition of fluid particle velocities

$$F_{d}(t) = -\frac{1}{2} \rho C_{d} | U_{r}(t) | U_{r}(t),$$

$$U_{r}(t) = \sum_{m=1}^{N_{d}} \sum_{j=1}^{N_{w}} a_{jm} V_{jm} (\vec{X}) e^{i(-\omega_{jm} t + \varepsilon_{jm})} + U_{C} - U_{S}$$

• Second order wave forces

$$\vec{\varepsilon}^{(2)}(t) = \sum_{m=1}^{N_d} \sum_{n=1}^{N_d} \sum_{j=1}^{N_m} \sum_{k=1}^{N_n} a_{jm} a_{kn} \{ \vec{P}_{jkmn}^+ \cos[(\omega_{jm} + \omega_{kn})t - (\varepsilon_{jm} + \varepsilon_{kn})] \\ + \vec{Q}_{jkmn}^+ \sin[(\omega_{jm} + \omega_{kn})t - (\varepsilon_{jm} + \varepsilon_{kn})] \\ + \vec{P}_{jkmn}^- \cos[(\omega_{jm} - \omega_{kn})t - (\varepsilon_{jm} - \varepsilon_{kn})] \\ + \vec{Q}_{jkmn}^- \sin[(\omega_{jm} - \omega_{kn})t - (\varepsilon_{jm} - \varepsilon_{kn})] \}$$

Quadruple summations

- Interaction between frequencies (sum and difference) and between directions

• Drift damping (Kim et al, 1997)

$$B_{11} = \sum_{m=1}^{N_d} \sum_{j=1}^{N_d} \Xi_{11}(\omega_j; \beta_m, \beta_n) \overline{F_x}(\omega_j; \beta_m, \beta_n),$$

$$\Xi_{11}(\omega_j; \beta_m, \beta_n) = \frac{1}{2} \{ (\cos\beta_m + \cos\beta_n) \cdot (k_j \frac{\partial}{\partial \omega_j} + \frac{2K_j}{C_{gj}}) - \frac{1}{C_{gj}} (\sin\beta_m \frac{\partial}{\partial \beta_m} + \sin\beta_n \frac{\partial}{\partial \beta_n}) \}$$

• Mean Drift force for multiple directional wave case

$$\overline{F}^{(2)} = \sum_{m=1}^{N_d} \sum_{n=1}^{N_d} \sum_{j=1}^{N_w} a_{jm} a_{jn} \{ P_{jjmn} \cos(\varepsilon_{jm} - \varepsilon_{jn}) - Q_{jjmn} \sin(\varepsilon_{jm} - \varepsilon_{jn}) \}$$

• Mean Drift force for single directional wave case

$$\overline{F}^{(2)} = \sum_{j=1}^{N_w} a_j P_{jj}^{-}$$

- Triple summations including directional coupling,
- In phase and out of phase components,
- Sensitive to wavelet random phases.

ANSYS Force spectrum in Fer

• First order wave exciting force

$$S_{F^{(1)}}(\omega) = \sum_{m=1}^{N_d} \left| F_m^{(1)}(\omega) \right|^2 S_m(\omega)$$

• Difference frequency second order wave force (v14.5)

$$S_{F^{(2)}}(\omega) = \sum_{m=1}^{N_d} \sum_{n=1}^{N_d} \{8 \int S_m(\mu) S_n(\mu + \omega) | D_{mn}(\mu, \mu + \omega) |^2 d\mu \}$$
$$|D_{mn}(\mu, \mu + \omega)|^2 = |P_{mn}^-(\mu, \mu + \omega)|^2 + |Q_{mn}^-(\mu, \mu + \omega)|^2$$

• Total wave force

$$S_F(\omega) = S_{F^{(1)}}(\omega) + S_{F^{(2)}}(\omega)$$

ANSYS Second order force coefficients

$$\vec{F}^{(2)} = -\frac{1}{2} \rho g \oint_{WL} \zeta_r^{(1)} \cdot \zeta_r^{(1)} \vec{n} \, dl + \frac{1}{2} \rho \iint_{S_0} [\nabla \Phi^{(1)} \cdot \nabla \Phi^{(1)}] \vec{n} \, dS + \rho \iint_{S_0} [\vec{X}^{(1)} \cdot \nabla \frac{d \Phi^{(1)}}{dt}] \vec{n} \, dS + \vec{\alpha}^{(1)} \times \vec{F}^{(1)} + \rho \iint_{S_0} \frac{d \Phi^{(2)}}{dt} \vec{n} \, dS$$

Water line integral

Bernoulli

Acceleration

Momentum

2nd order potential

without the 5th term and using complex values for unit wave amplitude

$$(\vec{P}_{jkmn}^{+}, \vec{Q}_{jkmn}^{+}) = -\frac{1}{4} \rho g \oint_{WL} \zeta'_{rjm} \cdot \zeta'_{rkn} \vec{n} \, dl + \frac{1}{4} \rho \iint_{S_0} [\nabla \Phi'_{jm} \cdot \nabla \Phi'_{kn}] \vec{n} \, dS$$
$$+ \frac{1}{2} \rho \iint_{S_0} [\vec{X}'_{jm} \cdot \nabla \frac{d \Phi'_{kn}}{dt}] \vec{n} \, dS + \frac{1}{2} \vec{\alpha}'_{jm} \times [\mathbf{M}_s \cdot \vec{X}'_{gkn}],$$
$$(\vec{P}_{jkmn}^{-}, \vec{Q}_{jkmn}^{-}) = -\frac{1}{4} \rho g \oint_{WL} \zeta'_{rjm} \cdot \zeta'^{**}_{rkn} \vec{n} \, dl + \frac{1}{4} \rho \iint_{S_0} [\nabla \Phi'_{jm} \cdot \nabla \Phi'^{**}_{kn}] \vec{n} \, dS$$
$$+ \frac{1}{2} \rho \iint_{S_0} [\vec{X}'_{jm} \cdot \nabla \frac{d \Phi'^{**}_{kn}}{dt}] \vec{n} \, dS + \frac{1}{2} \vec{\alpha}'_{jm} \times [\mathbf{M}_s \cdot \vec{X}'_{gkn}].$$

12 © 2011 ANSYS, Inc. November 26, 2012

ANSYS 4. Extended Newman's Approximation

- Store $(\vec{P}_{jkmn}^+, \vec{Q}_{jkmn}^+, \vec{P}_{jkmn}^-, \vec{Q}_{jkmn}^-)$ database,
- Interpolating $(\vec{P}_{jkmn}^+, \vec{Q}_{jkmn}^+, \vec{P}_{jkmn}^-, \vec{Q}_{jkmn}^-)$ of all wavelets at each time step,
- Quadruple summation of all 2nd order force components
- is numerically prohibitive
- Newman's approximation for single directional waves

$$\vec{P}_{jk}^{-'} = \frac{1}{2} [\vec{P}_{jj}^{-} + \vec{P}_{kk}^{-}]$$

• Extended Newman's approximation for multiple directional waves

$$\vec{P}_{jkmn}^{-'} = \frac{1}{2} [\vec{P}_{jjmn}^{-} + \vec{P}_{kknm}^{-}],$$
$$\vec{Q}_{jkmn}^{-'} = \frac{1}{2} [\vec{Q}_{jjmn}^{-} - \vec{Q}_{kknm}^{-}].$$

13 © 2011 ANSYS, Inc. November 26, 2012

ANSYS 4. Newman's Approximation

ANSYS 4. Extended Newman's Approximation

• Employing extended Newman's approximation

$$\vec{F}^{(2)} = \sum_{m=1}^{N_d} \{ (\sum_{j=1}^{N_m} c_{jm}) \times [\sum_{n=1}^{N_d} \sum_{k=1}^{N_n} (c_{kn} \vec{P}_{kknm} - s_{kn} \vec{Q}_{kknm})] \} + \sum_{m=1}^{N_d} \{ (\sum_{j=1}^{N_m} s_{jm}) \times [\sum_{n=1}^{N_d} \sum_{k=1}^{N_n} (s_{kn} \vec{P}_{kknm} + c_{kn} \vec{Q}_{kknm})] \}$$

where
$$c_{jm} = a_{jm} \cos(\omega_{jm}t - \varepsilon_{jm}), \ s_{jm} = a_{jm} \sin(\omega_{jm}t - \varepsilon_{jm})$$

- Require directional coupling mean drift force coefficients database,
- Obtain $(\vec{P}_{kknm}, \vec{Q}_{kknm})$ of actual relative direction at each time step,
- Quadruple summation reduced to triple summation.

Less hard disk and memory requirement, more efficient

Validation of extended Newman's approximation

Rectangular box in deep water, Internal lid, No 5th term

- $\left| P_{jkmm}^{-} \right| > \left| Q_{jkmm}^{-} \right|$ •
- Good for small $\Lambda \omega$

 $\theta_m = \theta_n = -180^0$

2nd order surge force $(\theta_m = -180^0, \theta_n = -90^0)$

Directional coupling effect on 2nd order surge force

Extended Newman's approximation

- Enable to estimate $(\vec{P}_{jkmn}^{-}, \vec{Q}_{jkmn}^{-})$ to include directional coupling effect
- As good as the original Newman's approximation for multiple directions
- Easy accomplishment

19 © 2011 ANSYS, Inc. November 26, 2012

5. Effect of multi directional spectrum on a moored LNG carrier

13500m^3 storage capacity LNG carrier (by courtesy of SBM)

Length between perpendiculars: 274m Draft: 11m

Soft mooring system:

Longitudinal mooring stiffness: 281kN/m Transverse mooring stiffness: 254kN/m Rotational mooring stiffness: 4.58E6kNm

Roll damping: 4.0e5 kNms/rad

Water depth: 15m

Spread sea:

JONSWAP spectrum: Hs=1m, Tp=10s, $\gamma = 3.3$ spreading form: $\cos^2(\theta - \overline{\theta})$, $\overline{\theta} = 180^0$

ANSYS Aqwa-Line Calculation

- Soft spring system is defined by additional structural stiffness (SSTF)
- 39 frequencies and 37 directions in [-180, 180] degrees
- Use MQTF option to calculate the directional coupling mean QTF matrices
- 25% extra CPU time for the directional coupling mean QTF calculation
- *.MQT size of 12mb compared to 2.3mb of *.RES

ANSYS Effects on equilibrium position

Three treatments of spreading sea:

- (1) Long crested wave along main heading AB7878P2LONG
- (2) Represented by 7-point Gaussian integration, no directional coupling MQTF AB7878P2NOQTF
- (3) Represented by 7-point Gaussian integration, with directional coupling MQTF AB7878P2MQTF

ANSYS Time domain analysis (Aqwa-Drift)

- 5% CPU increment for 7-sub-direction coupling drift force calculation
- Evident differences between 3 treatment results

ANSYS Frequency domain analysis (Aqwa-Fer 14.5)

- Output total force/response spectrum contributed by all sub-spectra
- Output RAO et al in main sub-direction (with max. Hs)
- Optionally output RAO in specified sub-direction (SSPC in deck18)

	Surge (m)		Sw	ay (m)	Heave (m)	
	Drift freq.	Wave freq.	Drift freq.	Wave	Drift freq.	Wave
				freq.		freq.
Long crested	1.073	0.018	0.000	0.000	0.011	0.036
Spread, no coupling	0.558	0.025	0.563	0.040	0.007	0.055
Spread, coupling	0.620	0.025	0.618	0.040	0.007	0.055

Comparison of the significant translational motions

ANSYS 6. Conclusions

- Spectral group is introduced to model multi-directional waves
- The directional coupling mean QTFs are calculated and used in Aqwa
- Extended Newman's approximation provides a fast & relatively accurate approach with acceptable hard disk/memory requirements
- Multiple directional waves and directional coupling QTF should be considered for moored offshore structure hydrodynamic analysis.

Thanks!

Azzalini A, Du S., May R. (2012) "Extended Newman's approximation for the second order drift force in short crested waves", prepared for NAV2012.

Chen X.J., Moan T., Fu S.X. and Cui W.C. (2006) "Second-Order Hydroelastic Analysis of a Floating Plate in Multidirectional Irregular Waves", International Journal of Non-Linear Mechanics, Vol.16, pp. 1206-1218.

Kim S., Sclavounos P.D. and Nielsen F.G. (1997) "Slow-Drift Responses of Moored Platforms", Proc. of the 8th Int. Conf. on the Behaviour of Offshore Structures BOSS 1997, July 1997, Delft, The Netherland, Vol. 2, pp. 161-176.

Newman J. N. (1974) "Second-Order, Slowly-Varying Forces on Vessels in Irregular Waves", Proc. of Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, Ed. Bishop RED and Price WG, Mech. Eng. Publications Ltd, London, UK, pp.193-197.

Pinkster J. A. (1980) "Low Frequency Second Order Wave Exciting Forces on Floating Structures", PhD Thesis, Delft University of Technology.

Renaud M., Rezende F.C., Chen X.B. and Parigi C.J. (2008) "Second-Order Wave Loads on a LNG Carrier in Multi-Directional Irregular Waves", Proc. of 8th Int. Conf. on Hydrodynamics ICHD, October 2008, Nantes, France, pp.373-380.

Renaud M., Rezende F., Waals O., Chen X.B. and van Dijk R. (2008) "Second-Order Wave Loads on a LNG Carrier in Multi-Directional Waves", Proc. of the 27th Int. Conf. on Ocean, offshore and Arctic Engineering OMAE2008, June 2008, Estoril, Portugal, Vol.1, Paper No. OMAE2008-5740979, pp. 363-370.

Rezende F.C. and Chen X.B. (2010) "Approximation of Second-order Low-Frequency Wave Loading in Multi-Directional Waves", Proc. of the ASME 29th Int. Conf. on Ocean and Arctic Engineering, June 2010, Shanghai, China, Vol.3, Paper No. OMAE2010-21099, pp. 855-861.

Sergent E. and Naciri M. (2010) "Wave Spreading and Wave Drift Loads for a Standard LNG Carrier in Shallow Water", Proc. of the ASME 29th Int. Conf. on Ocean and Arctic Engineering, June 2010, Shanghai, China, Vol.1, Paper No. OMAE2010-20580, pp. 355-362.

Waals O.J. (2009) "The Effect of Wave Directionality on Low Frequency Motions and Mooring Forces", Proc. of the 28th Int. Conf. on Ocean, offshore and Arctic Engineering OMAE2009, June 2009, Honolulu, Hawaii, USA, Vol.4, Paper No. OMAE2009-79412, pp. 289-298.