| InterpolationType |
|---|
| Spline |
| Linear |
| Quadratic |
extract_abscissae( (VariantD)item) -> VariantD
Extract the abscissae from 'item' and returns a VariantD vector.
If 'item' is a matrix, the first matrix row will be extracted.
If 'item' is xydata or a signal, the x-axis will be extracted.
from pyvariant import list_2_variant_xy_data, extract_abscissae x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print(extract_abscissae(variant)) # VECTOR [3] # (0,0) # (1,0) # (2,0)
extract_channel( (VariantD)item, (int)axis_nr) -> VariantD
Extract a channel 'axis_nr' from 'item' and returns a VariantD vector.
If 'item' is a matrix, extract_channel returns the row number 'axis_nr'.
If item is xydata or a signal, extract_channel returns the channel number 'axis_nr'.
from pyvariant import list_2_variant_xy_data, extract_channel x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print(extract_channel(variant, 1)) # VECTOR [3] # (0.1,0) # (0.2,0) # (0.3,0)
get_boolean( (VariantD)item) -> bool
Return the value if 'item' is a boolean.
from pyvariant import VariantD, get_boolean variant = VariantD(True) print(get_boolean(variant)) # True
get_scalar( (VariantD)item) -> complex
Return the complex value if 'item' is a scalar.
from pyvariant import VariantD, get_scalar variant = VariantD(1.0) print(get_scalar(variant)) # (1.0+0j)
interpolate( (VariantD)signal [, (float)increment=1.0 [, (InterpolationType)type=pyvariant.InterpolationType.Linear]]) -> VariantD
Perform interpolation on input signal. Optionally pass a value for x-increment and interpolation type.
is_boolean( (VariantD)item) -> bool
Return 'True' if 'item' is a bool value and 'False' otherwise.
from pyvariant import VariantD, is_boolean variant_a = VariantD(1.0) variant_b = VariantD(True) print(is_boolean(variant_a), is_boolean(variant_b)) # False True
is_matrix( (VariantD)item) -> bool
Return 'True' if 'item' is a matrix and 'False' otherwise.
from pyvariant import VariantD, is_matrix, list_list_2_variant_matrix variant_a = VariantD(1.0) variant_b = list_list_2_variant_matrix( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) print(is_matrix(variant_a), is_matrix(variant_b)) # False True
is_scalar( (VariantD)item) -> bool
Return 'True' if 'item' is a scalar value and 'False' otherwise.
from pyvariant import VariantD, is_scalar variant_a = VariantD(1.0) variant_b = VariantD(True) print(is_scalar(variant_a), is_scalar(variant_b)) # True False
is_signal( (VariantD)item) -> bool
Return 'True' if 'item' is a signal and 'False' otherwise.
from pyvariant import VariantD, is_signal, list_list_2_variant_signal variant_a = VariantD(1.0) x_axis = [1.0, 2.0, 3.0] y_axes = [[0.1, 0.2, 0.3], [1.3, 1.2, 1.1]] variant_b = list_list_2_variant_signal(y_axes, x_axis) print(is_signal(variant_a), is_signal(variant_b)) # False True
is_uninitialized( (VariantD)item) -> bool
Return 'True' if 'item' is a uninitialized and 'False' otherwise.
from pyvariant import VariantD, is_uninitialized variant_a = VariantD(1.0) variant_b = VariantD() print(is_uninitialized(variant_a), is_uninitialized(variant_b)) # False True
is_vector( (VariantD)item) -> bool
Return 'True' if 'item' is a vector and 'False' otherwise.
from pyvariant import VariantD, is_vector, list_2_variant_vector variant_a = VariantD(1.0) variant_b = list_2_variant_vector([1.0, 2.0, 3.0]) print(is_vector(variant_a), is_vector(variant_b)) # False True
is_xy_data( (VariantD)item) -> bool
Return 'True' if 'item' is a xy-data and 'False' otherwise.
from pyvariant import VariantD, is_xy_data, list_2_variant_xy_data variant_a = VariantD(1.0) x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant_b = list_2_variant_xy_data(y_axis, x_axis) print(is_xy_data(variant_a), is_xy_data(variant_b)) # False True
list_2_variant_vector( (list)values) -> VariantD
Convert a python list of values into VariantD vector type.
from pyvariant import list_2_variant_vector values = [1.0, 2.0, 3.0] print(list_2_variant_vector(values)) # VECTOR [3] # (1.0,0) # (2.0,0) # (3.0,0)
list_2_variant_xy_data( (list)y_axis, (list)x_axis) -> VariantD
Convert a python list of x-values and a list of y-values into VariantD xy-data type.
from pyvariant import list_2_variant_xy_data x_axis = [1.0, 2.0, 3.0] y_axis = [0.1, 0.2, 0.3] print(list_2_variant_xy_data(y_axis, x_axis)) # XYDATA [3, 1] # (1,0) - (0.1,0) # (2,0) - (0.2,0) # (3,0) - (0.3,0)
list_list_2_variant_matrix( (list)values) -> VariantD
Convert a python list of lists of values into VariantD matrix type.
from pyvariant import list_list_2_variant_matrix values = [[1, 2], [3, 4], [5, 6]] print(list_list_2_variant_matrix(values)) # MATRIX [3, 2] # (1,0) (2,0) # (3,0) (4,0) # (5,0) (6,0)
list_list_2_variant_signal( (list)y_axes, (list)x_axis [, (bool)transpose_channels=False]) -> VariantD
Convert a python list of x-values and a list of lists of y-values into VariantD signal type.
from pyvariant import list_list_2_variant_signal x_axis = [1.0, 2.0, 3.0] y_axes = [[0.1, 0.2, 0.3], [1.3, 1.2, 1.1]] print(list_list_2_variant_signal(y_axes, x_axis)) # SIGNAL [3, 2] # (1,0) - (0.1,0) (1.3,0) # (2,0) - (0.2,0) (1.2,0) # (3,0) - (0.3,0) (1.1,0)
Return the length of dimension 1.
If 'item' is a scalar, size1 is equal to '1'.
If 'item' is a vector, size1 returns the number of vector entries.
If 'item' is a matrix, size1 returns the number of matrix rows.
If 'item' is xy-data or a signal, size1 returns the number of y-axes.
from pyvariant import list_2_variant_xy_data x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print('size1 of variant is {}.'.format(variant.size1())) # size1 of variant is 1.
Return the length of dimension 2.
If 'item' is a scalar or vector, size2 is equal to '1'.
If 'item' is a matrix, size2 returns the number of matrix columns.
If 'item' is xydata or a signal, size2 returns the number of y-axis entries.
from pyvariant import list_2_variant_xy_data x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print('size2 of variant is {}.'.format(variant.size2())) # size2 of variant is 3.
Constructors
Methods
get_value
get_value( (int)row) -> complex
Return the complex value from index (row).
from pyvariant import list_2_variant_vector variant = list_2_variant_vector([1.0, 2.0, 3.0]) row = 1 print('Value from index ({}) is {}.'.format( row, variant.get_value(row).real)) # Value from index (1) is 2.0.
----
get_value( (int)row, (int)col) -> complex
Return the complex value from index (row, col).
from pyvariant import list_2_variant_xy_data x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) row, col = 0, 1 print('Value from index ({}, {}) is {}.'.format( row, col, variant.get_value(row, col).real)) # Value from index (0, 1) is 0.2.
size1
size1() -> int
Return the length of dimension 1. If VariantD is a scalar, size1 is equal to '1'.
If VariantD is a vector, size1 returns the number of vector entries.
If VariantD is a matrix, size1 returns the number of matrix rows.
If VariantD is xy-data or a signal, size1 returns the number of y-axes.
from pyvariant import list_2_variant_xy_data x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print('size1 of variant is {}.'.format(variant.size1())) # size1 of variant is 1.
size2
size2() -> int
Return the length of dimension 2.
If VariantD is a scalar or vector, size2 is equal to '1'.
If VariantD is a matrix, size2 returns the number of matrix columns.
If VariantD is xydata or a signal, size2 returns the number of y-axis entries.
from pyvariant import list_2_variant_xy_data x_axis, y_axis = [1.0, 2.0, 3.0], [0.1, 0.2, 0.3] variant = list_2_variant_xy_data(y_axis, x_axis) print('size2 of variant is {}.'.format(variant.size2())) # size2 of variant is 3.